

Sixth Semester B.E. Degree Examination, Jan./Feb. 2021 Digital Communication

Time: 3 hrs.
Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. With neat diagram, explain Canonical representation of Band - pass signal.
(10 Marks)
b. Obtain Hilbert transform of the following:
i) $x(t)=\cos 2 \pi f_{c} t+\sin 2 \pi f_{c} t$
ii) $\mathrm{x}(\mathrm{t})=\mathrm{e}^{-\mathrm{j} 2 \pi \mathrm{f}_{\mathrm{c}} \mathrm{t}}$
iii) $x(t)=\delta(t)$.
(06 Marks)

OR

2 a. Explain the complex representation of band pass signals and systems.
(07 Marks)
b. Given the data stream 1011100101. Sketch the pulses for each of the following line code :
i) Unipolar RZ
ii) Bipolar NRZ
iii) Manchester code
iv) Polar quarternary (Natural code)
(04 Marks)
c. Write a short note on HDB3 signaling.
(05 Marks)

Module-2

3 a. Using the Gram - Schmidt Orthogonalization procedure, find a set of Orthonormal basis functions to represent the three signals $S_{1}(t), S_{2}(t)$ and $S_{3}(t)$, shown in Fig. Q3(a).
(10 Marks)

Fig. Q3(a)

b. Explain the matched filter receiver with mathematical expression.
(06 Marks)

OR

4 a. Explain the Geometric representation of signals. Illustrate the geometric interpretation of signals for the case of 2 - dimensional signal space with 3 signals $S_{1}(3,1), S_{2}(1,2)$, $S_{3}(2,3)$.
(07 Marks)
b. Obtain the decision rule for ML decoding and explain Correlation receiver.
(09 Marks)

Module-3

5 a. With a block diagram of QPSK transmitter and receiver, explain generation and demodulation of a QPSK wave.
(08 Marks)
b. Obtain the expression for probability of error of BPSK.
(08 Marks)

OR

6 a. With a neat diagram, explain the DPSK transmitter and receiver.
(07 Marks)
b. Describe briefly M - ary QAM. Obtain the constellation of QAM for $M=4$ and draw the signal space diagram.
(06 Marks)
c. Draw the QPSK waveform for the sequence $\begin{array}{llllllll}1 & 1 & 0 & 1 & 0 & 0 & 0 \text { showing in - phase and }\end{array}$ Quadrature components.
(03 Marks)

Module-4

7 a. Explain the Nyquist criterion for distortion less base band binary transmission and obtain the ideal solution for zero ISI.
(08 Marks)
b. What is Linear equalizer? With a neat diagram, explain the concept of equalization using a linear transversal filter.
(08 Marks)

OR

8 a. With a neat block diagram, explain the digital PAM transmission through band limited base band channels and obtain the expression for ISI.
(06 Marks)
b. What is Eye pattern? Explain with diagram, for binary and quaternary PAM and effect of ISI on eye opening.
(05 Marks)
c. The binary sequence 111010010001101 is the input to the precoder. Obtain the precoded sequence, transmitted sequence, the received sequence and the decoded sequence.
(05 Marks)

Module-5

9 a. With a neat block diagram, explain the concept of Frequency Hopped Spread Spectrum.
(07 Marks)
b. Explain the effect of dispreading on a Narrow band interference with necessary diagram.
(04 Marks)
c. Find the output sequence of the shift register shown in Fig. Q9(c). The initial state of the register is 111 . Demonstrate the balance property and run property of a PN sequence. Also sketch the autocorrelation function.
(05 Marks)

Fig. Q9(c)

OR

10 a. Explain the generation of Direct Sequence Spread Spectrum (DSSS) signal with relevant waveforms and spectrum.
(06 Marks)
b. With a neat block diagram, explain the CDMA System based on IS - 95 .
(07 Marks)
c. Write a short note on Applications of Direct Sequence Spread Spectrum in CDMA.
(03 Marks)

